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Abstract: Computer vision is a field that involves making a machine "see". This 

technology uses a camera and computer instead of the human eye to identify, track 

and measure targets for further image processing. With the development of computer 

vision, such technology has been widely used in the field of agricultural automation 

and plays a key role in its development. This review systematically summarizes and 

analyzes the technologies and challenges over the past three years and explores future 

opportunities and prospects to form the latest reference for researchers. Through the 

analyses, it is found that the existing technology can help the development of 

agricultural automation for small field farming to achieve the advantages of low cost, 

high efficiency and high precision. However, there are still major challenges. First, 

the technology will continue to expand into new application areas in the future, and 

there will be more technological issues that need to be overcome. It is essential to 

build large-scale data sets. Second, with the rapid development of agricultural 



automation, the demand for professionals will continue to grow. Finally, the robust 

performance of related technologies in various complex environments will also face 

challenges. Through analysis and discussion, we believe that in the future, computer 

vision technology will be combined with intelligent technology such as deep learning 

technology, be applied to every aspect of agricultural production management based 

on large-scale datasets, be more widely used to solve the current agricultural problems, 

and better improve the economic, general and robust performance of agricultural 

automation systems, thus promoting the development of agricultural automation 

equipment and systems in a more intelligent direction.

Key words: computer vision; image processing; agricultural automation; intelligent 

detection

1. Introduction

In recent years, agriculture has played a key role in the global economy. As the 

population continues to expand, urbanization will lead to a gradual reduction in the 

area of cultivated land, and the pressure on the agricultural system will continue to 

increase [1,2]. The demand for effective and safe agricultural food production 

methods is growing [3-5]. Traditional agricultural management methods must be 

complemented by innovative sensing and driving technologies and improved 

information and communication technologies [6] to accelerate the increase in 

agricultural productivity in a more accurate manner, thereby promoting the 

development of high-quality and high-yield agriculture [7]. In the past few decades, 



computer vision inspection systems have become important tools in agricultural 

operations [8], and their use has greatly increased [9]. Expert and intelligent systems 

based on computer vision algorithms are becoming a common part of agricultural 

production management, and computer vision-based agricultural automation 

technology is increasingly used in agriculture to increase productivity and efficiency 

[10]. With the development of technologies such as GPUs (Graphics Processing Units) 

and DBNs (Deep Belief Networks) and the rapid development of artificial intelligence 

[11], the ability of computer vision technology has been greatly improved, and the 

improvements in resource efficiency [12] have provided many suggestions and 

insights for decision support and practices for farmers [13], ensuring the efficiency of 

agricultural production [14]. Therefore, computer vision technology will be 

increasingly applied to the field of agricultural automation and will steadily promote 

the development of agriculture to the era of intelligent agriculture 4.0 [15].

This review systematically summarizes the articles and findings from 

2017-2019, analyzes the existing technologies and challenges, and explores the future 

opportunities and prospects to develop a current reference for researchers. Chapter 2 

of this review introduces the developments and applications of computer vision 

technology in the field of agricultural automation. Six areas are involved in this 

section, including monitoring of crop growth, disease prevention, automatic 

harvesting, quality testing, automated management of modern farms and the 

monitoring of farmland information with Unmanned Aerial Vehicle (UAV). Chapter 

3 analyzes the serious challenges faced in applying computer vision technology in the 



field of agricultural automation. Chapter 4 discusses the application prospects of 

computer vision technology in the field of agricultural automation. Finally, the 

conclusions are discussed.

2. The development status of computer vision technology in 

agricultural automation

2.1 The monitoring of the healthy growth of crops

The healthy growth of crops determines the yield, quality, resource utilization 

and ultimate economic benefits of agricultural production. However, there are a total 

of 17 essential elements that are needed for the growth of crops [16], including 

macronutrients, secondary nutrients and micronutrients. Traditionally, the monitoring 

of crop growth mainly relies on subjective human judgment and is not timely or 

accurate. Crop monitoring is an essential aspect of precision agriculture that captures 

information at different crop growth stages. Having an accurate understanding of the 

growth environment to make appropriate adjustments and optimize the growth 

environment of crops is greatly helpful in improving the production efficiency [17]. 

Compared with manual operations, the real-time monitoring of crop growth by 

applying computer vision technology can detect the subtle changes in crops due to 

malnutrition much earlier than human monitoring and can provide a reliable and 

accurate basis for timely regulation [18].

Dóra Faragó et al. [19] measured the basic morphology and physiological 

parameters of plants grown in vitro based on a noninvasive method. The images were 



comprehensively analyzed according to plant-size using MATLAB, and the main 

parameters, such as the plant size, convex ratio and chlorophyll content, were 

calculated. This method has the characteristics of strong versatility and low cost and is 

relatively simple. M.P. Rico-Fernández et al. [8] conducted further research; they 

studied the effects of botanical indicators and the color space using different machine 

learning algorithms and observed the changes in crop types, leaf color, and so on. 

They compared existing methods such as threshold processing and machine learning. 

On the basis of the analysis, a new formula, including the CIE Luv color space and a 

support vector machine, was proposed, and it has achieved good results in crop 

monitoring. This method can be applied to a variety of environments and crop species. 

However, it is still very challenging to analyze the images and improve the efficiency 

and accuracy of an analysis under backlight conditions.

Researchers have developed relevant monitoring methods for different plants 

with the aim of making monitoring faster and more accurate. Rodrigo Pérez-Zavala et 

al. [20] used a visible spectrum camera for robust grape berry recognition and grape 

bunch detection. The method they proposed relies on the shape, texture information, 

and segmentation of aggregated pixel regions. The evaluation results show that the 

grape monitoring accuracy was improved. This method works reliably under different 

lighting and occlusion conditions. In the same year, F Fahmi et al. [21] performed 

orthophoto processing on palm oil plantations based on the MATLAB image 

processing algorithm in a UAV. They used a GLCM (Grayscale Cooccurrence Matrix) 

method to classify fertile, sterile, and dead palm oil plants and developed parameters 



based on four directions and specific degrees of 0°, 45°, 90°, and 135°. The 

experiments showed that UAV-based monitoring can obtain information more quickly 

and accurately than traditional methods.

The yield and quality of important crops such as rice and wheat [22] determine 

the stability of food security, so it is essential to be able to continuously and 

nondestructively monitor plant growth and the response to nutrient requirements. 

Yuanyuan Sun et al. [23] analyzed the dynamic characteristics of rice leaves to 

diagnose nitrogen levels and used MATLAB to extract the leaf characteristics of 

different leaf positions. Newly developed features such as the yellowing area (EA), 

degree of yellowing (ED), and shape (area and perimeter), as well as color 

characteristics (green, standardized red index, etc.) are used to quantify the blade 

variation process. The advantage of this method is that it can be performed 

continuously and dynamically without damaging the plants. The heading date of 

wheat is one of the most important parameters for wheat crops. To accurately capture 

the heading date of wheat, Zhu et al. [24] studied an automatic computer vision 

observation system for the wheat heading period. The detection system was divided 

into rough detection and fine detection. They collected images under natural 

conditions, changed the lighting conditions frequently and conducted a series of 

experiments. The experimental results showed that the method was obviously superior 

to the existing method, and the absolute error of the test dataset was 1.14 days. The 

method had small errors and good robustness, but it was limited to monitoring the 

heading period. For the purpose of simultaneously monitoring the growth stage of the 



heading and flowering stages of wheat, Sadeghi Tehran P et al. [25] conducted further 

research and developed an automated method for monitoring both the wheat heading 

and flowering. The method has better detection accuracy than other methods, and the 

method is robust enough to be used for complex environmental changes such as 

illumination and occlusion.

The existing computer vision technologies can address the deficiencies of 

traditional monitoring and reduce the difficulty of traditional growth monitoring in 

terms of time, continuity and cost. Computer vision technology has the advantages of 

low cost, small error, high efficiency and good robustness and can be dynamically and 

continuously analyzed. However, the related methods still have limitations, achieving 

versatility and stability in various complicated situations is still challenging and 

extensive work will be required in the future in this regard.



Table 2-1 Summary of methods used for crop health growth monitoring

Author and 
year 

Application goals and 
scenarios

Method adopted
Types of 
sensors

The results obtained Advantages and disadvantages

Farago et al., 
2018 [19]

Measurement of plant 
morphology and parameters

A noninvasive method
Canon PowerShot 

SX20

Parameters such as the 
chlorophyll content of 
plants were obtained.

Strong versatility, low cost and relatively 
simple

Rico-Fernández 
et al., 2019 [8]

Measurement of plant growth 
indicators, etc.

Threshold segmentation, 
machine learning, CIE 
Luv color space, etc.

A camera 
mounted to 

Bonirob
Canon PowerShot 

S95
Canon EOS 
REBEL T2i

A very good result was 
achieved.

Ability to work in a variety of crops and 
environments

Analysis of images with backlight is still 
very challenging.

Pérez-Zavala et 
al., 2018 [20]

Monitoring of grape growth
A method based on shape 
and texture information 

and clustering pixels

Visible spectrum 
cameras

Grape bunches and 
individual berries were 

accurately detected.

It operates reliably under different lighting 
and occlusion conditions.

Fahmi et al., 
2018 [21]

Monitoring of palm oil 
plantations

Gray level cooccurrence 
matrix (GLCM) method

Drone type DJI 3 
type Phantom

The accuracy of the 
system was achieved.

UAV-based monitoring can obtain 
information more quickly and accurately.

Yuanyuan Sun et 
al., 2018 [23]

Diagnosis of nitrogen content 
in rice leaves

A method for extracting 
features of different 

locations using MATLAB

A high-resolution 
camera

The blade change 
process was quantified.

Continuous and dynamic analysis can be 
performed without damage.



Zhu et al., 2016 
[24]

Observation of the heading 
date of wheat

An automatic observation 
system based on 
computer vision 

E450 Olympus

The absolute error of the 
method is 1.14 days 
compared to other 

methods.

The method has small error and good 
robustness.

Sadeghi-Tehran 
et al., 2017 [25]

Determination of the growth 
stage during the heading and 

flowering periods

A method for 
automatically detecting 

wheat heading and 
flowering

8 MP camera

The proposed method is 
robust enough and the 

flowering detection 
accuracy is 85.45%.

Heading and flowering can be monitored 
at the same time, with high detection 

accuracy and robustness.



2.2 The prevention and control of crop diseases, insect pests and weeds

The prevention and control of crop diseases, insects and weeds are the key steps 

in producing high-quality and pollution-free agricultural products and achieving  

high yields. Making full use of comprehensive agricultural measures to quickly and 

accurately diagnose the occurrence of pests and diseases [26] in farmland and to 

automatically and accurately estimate the severity of diseases is critical in crop 

disease prevention and control and the reduction of yield losses [27]. In the traditional 

management methods for agricultural plant protection, there are problems such as a 

lack of relative attention, poor accuracy and poor timeliness [28]. Currently, these 

methods rely more on manual management. For practitioners, there are higher 

requirements for professionalism. It is difficult for these methods to achieve 

universalization, and it is impossible for them to be implemented in real time. It is 

challenging to minimize the crop damage caused by disease, but through the 

application of computer vision technology, the timeliness and accuracy of prevention 

and control measures have been greatly improved, and the ability to control crop 

diseases, pests and weeds has been greatly improved. Prevention and control at 

critical times can reduce losses, increase efficiency and promote sustainable 

agricultural development [29].

The detection and identification of pests in farmland is a necessary condition for 

integrated pest management (IPM). Currently, farmers must first sample the pests and 

then manually count and identify them in a time-consuming manner that is labor 



intensive and error prone. Computer vision technology does some of this work in a 

more efficient and accurate manner. Researchers have made many efforts to this end. 

To monitor the status and count the number of aphids on soybean leaves, 

Mohammadmehdi Maharlooei et al. [30] used image processing techniques to 

perform many tests on soybean plants grown in a greenhouse. The acquired images 

were processed using MATLAB R2014a software to identify and calculate the 

number of mites. The method is low cost and has been experimentally proven to have 

excellent precision in good lighting conditions. The downside of this method is that in 

low-light situations, there will be differences in the results. Recognition based on the 

spectral characteristics of the target is more stable and accurate. Liu H et al. [31] 

developed a multispectral computer vision system for detecting the invertebrate pests 

commonly found on green leaves in the natural environment. In the experiments to 

detect twelve common invertebrate crop pests, an acceptable level of accuracy was 

demonstrated. In addition to its high level of accuracy, the system can also make 

real-time action decisions for robots. Intelligent prediction can be achieved if based 

on real-time and accurate monitoring; this will play an important role in the 

prevention and control of agricultural diseases. Zhong Y et al. [32] designed and 

implemented a vision-based monitoring system that applied the you only look once 

(YOLO) and support vector machine (SVM) methods and showed good performance. 

The average system accuracy rate was 92.50%, and the average classification 

accuracy rate was 90.18%. In addition to providing effective and accurate 

identification data, the system can also form a comprehensive service platform for 



predicting the occurrence probability and development trend of pests, which are of 

great significance.

Wheat stripe rust spores are spore rust pathogens that endanger the healthy 

growth of wheat crops. Li Xiaolong et al. [33] developed an automatic counting 

system based on image processing using the MATLAB guidance platform and a local 

C compiler (LCC). The application of various algorithms for processes such as image 

scaling and clustering segmentation was realized, and the accuracy achieved by the 

technology was over 95%. This method has the outstanding advantage of a high level 

of accuracy, but further exploration of applying the system in a field environment is 

needed. Deep learning is the latest breakthrough in the field of computer vision, and it 

is expected to be used for the classification of fine-grained disease severity to quickly 

and accurately determine crop diseases. Wang G et al. [34] used a series of deep 

convolutional neural networks to diagnose the severity of a crop disease using apple 

black rot images from the PlantVillage dataset. The overall accuracy of the best model 

for the test dataset was 90.4%. This finding proves the application potential of deep 

learning in agricultural disease monitoring. The existing crop disease diagnostic 

system has a single application target, and it is difficult to diagnose a plurality of 

plants. Toseef M et al. [35] proposed a method for intelligent crop disease diagnosis 

that can be used as the main back-end decision engine. The system takes the crop 

symptoms as inputs and uses an inference engine to produce an output in the form of a 

disease diagnosis. The system caters to two major crops, cotton and wheat, and is able 

to diagnose major diseases with an accuracy rate of 99%. The method innovatively 



realizes the establishment of a small data set, can simultaneously monitor two crops, 

and is easy to use, with great potential.

Weeds are considered to be harmful plants in agronomy because they compete 

with crops to obtain the water, minerals and other nutrients in the soil. The intelligent 

detection and removal of weeds are critical to the development of agriculture. Sabzi S 

et al. [36] proposed a neural network-based computer vision expert system for 

identifying potato plants and three different weeds for on-site specific spraying. From 

each object, 126 color features and 60 texture features were extracted. The 

experimental results showed that the proposed expert system achieved a 98.38% 

accuracy and an average PC execution time of less than 0.8 seconds. However, when 

the plant density was very high; therefore, the system use is limited.

In the same year, to accurately perform pesticide spraying tasks, Zhai Z et al. 

[37] proposed a precision farming system (PFS) as a multiagent system (MAS). This 

method works well and can effectively plan tasks and allocate scarce resources. 

Spraying pesticides only in the exact locations of weeds greatly reduces the risk of 

contaminating crops, humans, animals and water resources. The previously described 

treatment scheme for weeds has a relatively simple function. Chang C-L et al. [38] 

combined computer vision and multitasking to develop a small intelligent agricultural 

machine capable of automatic weeding and variable irrigation on cultivated land. The 

machine classifies the plants and weeds in real time so that the machine can weed and 

water while maintaining a deep soil moisture content of 80 ± 10% and an average 

herbicidal rate of 90%. This method has very good prospects as it not only realizes the 



integration of multitasking but also the comprehensive utilization of resources.

Based on the above analysis, computer vision technology has been well applied 

in the prevention and control of agricultural pests and diseases, and its high efficiency, 

high precision and low cost are its main features. However, many of the results are 

still in the experimental phase and will be largely impacted when more complex 

factors, such as lighting variations and the plant density, are considered. Therefore, it 

is necessary to improve the reliability and robustness of the related systems. There is 

potential to establish related datasets for multitask fusion and the application of 

hyperspectral techniques [39] and deep learning neural networks.



Table 2-2 Summary of methods for the prevention and control of crop diseases, pests and weeds

Author and 
year 

Application goals and 
scenarios

Method adopted Types of sensors The results obtained Advantages and disadvantages

Maharlooei et 
al., 2017 [30]

Detection and counting of 
soybean aphids

Image processing 
technology

Canon EOS Rebel T2i 
Sony DSC-W80 

Panasonic DMC-ZS20 
Canon EOS Rebel T2i DSLR 

Canon power shot G11 

The image processing 
toolbox enables the 
identification and 

enumeration of mites.

Lower cost and ideal accuracy in 
high light conditions. However, 

there are some differences in low 
light.

Liu and Chahl, 
2018 [31]

Detection of common 
invertebrate pests in 

farmland
A multispectral 3D MVS Foral reflectance database Acceptable accuracy

The precision is high, and the 
robot system can be optimized in 

real time.

Zhong et al., 
2018 [32]

Fast counting and 
identification of flying 

insects
Raspberry PI

Raspberry Pi Camera Module 
v2

Average counting 
accuracy is 92.50% and 
average classification 
accuracy is 90.18%.

Easy to use, real-time intelligent 
monitoring is possible.

Xiaolong et al., 
2017 [33]

Automatic counting of 
stripe rust spores

Automatic counting system 
based on image processing

An inverted microscope
The accuracy rate is 

over 95%.

Accuracy is high, but further 
exploration is needed in the 

natural and other environments.

Wang et al., 
2017 [34]

Identification of apple 
black rot

Deep convolutional neural 
network

PlantVillage dataset
Produced 90.4% 

accuracy on the test set.
Innovative application of a deep 

learning model.



Toseef and 
Khan, 2018 [35]

Diagnosis of diseases in 
wheat and cotton crops

Fuzzy inference system

Websites of agriculture 
departments of governments

Websites of agriculture 
universities

Online literature
Field surveys

Agriculture experts

Accuracy is as high as 
99%.

The invention realizes the 
establishment of a small data set 

innovatively and can 
simultaneously detect wheat and 
cotton, is convenient to use and 

has great potential.

Sabzi et al., 
2018 [36]

Identification of potato 
plants and three different 

weeds

Computer vision expert 
system based on a neural 

network
DFK 23GM021

Recognition accuracy 
of 98.38% and average 
PC execution time of 

less than 0.8 s.

Achieves high accuracy and high 
efficiency. However, if the density 

of the plants is very high, they 
cannot be separated 

independently.

Zhai et al., 2018 
[37]

Precise spraying of 
pesticides

Genetic algorithm and 
particle swarm optimization 

algorithm
Six unmanned aerial vehicles

Able to effectively plan 
tasks and allocate 
scarce resources.

 Can effectively plan tasks and 
allocate scarce resources.

Chang and Lin, 
2018 [38]

Automatic weeding and 
variable irrigation

Combines computer vision 
and multitasking

Logitech digital webcam

Average herbicidal rate 
of 90% and average 
classification rate of 

90% or higher.

High accuracy, saves resources 
and good prospects.



2.3 The realization of automatic crop harvesting

In traditional agriculture, there is a reliance on mechanical operations, with 

manual harvesting as the mainstay, which results in high costs and low efficiency. In 

recent years, with the continuous application of computer vision technology, high-end 

intelligent agricultural harvesting machines, such as harvesting machinery and picking 

robots based on computer vision technology, have emerged in agricultural production, 

which has been a new step in the automatic harvesting of crops [40]. Researchers 

have performed much research on the application of computer vision technology for 

automatic crop harvesting, and some of the results have been applied in actual 

production. A long time ago, R. Noble et al. [41] designed a vision system for a 

mushroom strain collection robot to obtain the mushroom position and determine the 

optimal picking sequence. The application of computer vision technology has great 

potential for development [42] and will contribute to the effective and accurate 

development of agricultural products.

The lack of automated harvesting techniques in agricultural production 

management is a key issue due to the rising production costs and increased 

uncertainty of future labor availability. In recent years, with the development of 

spectroscopy technology, spectral imaging has become an important means of crop 

detection. Yuan Ting et al. [43] studied recognition and feature collection methods for 

the near-infrared images of cucumber fruit, and through the analysis and comparison 

of each spectral band, the spectral reflection characteristics of cucumber fruit, stems 



and leaves were marked and captured. According to the algorithm verification 

procedure, the extraction success rate of the grab area was 83.3%. This method used 

spectroscopy innovatively, but there is still a need to improve the accuracy of 

recognition. In order to realize the automatic identification of cherries in the natural 

environment, Zhang Qirong [44] designed a robot vision system method for 

identification. The method uses median filter preprocessing, Otsu algorithm threshold 

segmentation, area threshold noise elimination and an implementation of the Hough 

transform. The cherry identification success rate was over 96%. This method greatly 

reduces the difficulty and cost of picking and improves efficiency. Sweet pepper 

crops grown in a field present some challenges to a robotic system, such as height 

occlusion issues and the similarity between the crop and background colors. To 

overcome these problems, Christopher McCool et al. [45] proposed a new 

vision-based sweet pepper (chili) detection system and a new method of crop 

segmentation using the local binary pattern (LBP) method. The average detection 

accuracy of a human viewing the same color image was 66.8%, and 65.2% of the 

field-planted sweet peppers were detected at three locations using the LBP approach. 

This result is very exciting, and the system uses new features and has high precision. 

However, there is still much room for improvement in terms of accuracy.

The most time-consuming and labor-intensive task in fresh fruit production is 

harvesting, but the production of high-value specialty crops such as apples still relies 

on manual labor. In the past decade, the harvesting efficiency of the apple harvesting 

system studied was approximately 80%, and the picking time ranged from 8 to 15 



seconds per fruit [46]. In recent years, researchers have explored apple harvesting and 

have improved the related performance in terms of speed and robustness. Joseph R. 

Davidson et al. [47] introduced a preliminary design for a robotic apple harvester. The 

robotic machine vision system combines a circular Hough transform and speckle 

analysis to detect clustered and occluded fruits. The experimental results show that 

the system collected 95 out of 100 fruits, with average positioning and picking times 

of 1.2 and 6.8 seconds, respectively. The robot demonstrates the advantages of low 

cost and high efficiency. In order to improve the efficiency of robots in picking 

mature apples in terms of time and the ability to continuously identify and operate at 

night, Ji Wei et al. [48] proposed a retinex algorithm based on a guided filter to 

enhance nighttime images. The experiments showed that compared with a retinex 

algorithm based on a bilateral filter, the algorithm displayed better real-time 

performance and higher efficiency. It is very beneficial to improve the accuracy and 

efficiency of night-time apple picking robots.

The main focus of harvesting operations is to ensure product quality during 

harvesting to maximize the market value [49]. Noise is extremely challenging for 

automated harvesting due to the harsh weather conditions, changes in brightness and 

the presence of dust, insects and other unavoidable sources of noise. The existing 

technology overcomes many difficulties and innovatively applies spectroscopy, deep 

learning and other methods that demonstrate high accuracy and low cost. It is worth 

noting that there is still much room for improvement in efficiency and accuracy in 

more complex situations. At the same time, agricultural harvest automation must be 



economically viable, which means that the technology must be capable of rapid 

perception, calculation and response to environmental changes [40]. The development 

of such technology requires multidisciplinary cooperation in many fields, such as 

horticultural engineering, computer science, mechatronics, deep learning, intelligent 

design and system design. There are great challenges associated with the requirements 

of technology and the talent needed. In addition, in many studies, it has also been 

found that the development of automated harvesting requires more suitable and 

powerful 3D imaging system image processing algorithms to play an increasingly 

important role in enhanced 3D imaging systems [50].



Table 2-3 Summary of applications to the automatic harvesting of crops

Author and 
year

Application goals and 
scenarios

Method adopted
Types of 
sensors

The results obtained Advantages and disadvantages

Yuan Ting, 
2009 [43]

Picking cucumbers 
automatically in a 

greenhouse 
environment

Cucumber recognition and 
feature acquisition based on 

near infrared imaging

Hyper HAD 
CCD

The success rate of the extraction 
of the grab area is 83.3%.

The method uses spectroscopy 
innovatively, but the recognition 
accuracy needs to be improved.

Zhang et al., 
2017 [44]

Automatic 
identification of 

cherries in a natural 
environment

A robot vision system 
identification method

0.9R-G
Otsu algorithm
Canny operator

Hough transform

The recognition success rate of 
cherries is over 96%.

Reduce the difficulty and cost of 
picking and improve efficiency

Christopher 
McCool†∗, 
2016 [45]

Accurate identification 
of sweet pepper crops

A new type of sweet pepper 
(chili) vision-based detection 

system
JAI AD-130GE

The LBP feature is used to realize 
ideal recognition.

The features are very novel and close 
to the human eye recognition effect, 

but the accuracy still needs to be 
improved.

Joseph R. 
Davidson, 2016 

[47]

Automated harvesting 
of apples.

The machine vision system 
combines a circular Hough 

transform and speckle 
analysis to achieve detection

Prosilica 
GC1290C

Camcube 3.0

The collection rate is 95%, and 
the average positioning and 
picking time are 1.2 and 6.8 

seconds, respectively.

The robot demonstrates the 
advantages of low cost and high 

efficiency.

Ji Wei 2018 
[48]

Improve the efficiency 
of robotic apple picking

A retinex algorithm based on 
a guided filter

UniflyM216

Real-time and more efficient than 
traditional algorithms and 

continuous operation at night can 
be achieved

Compared with traditional 
algorithms, the accuracy and 

efficiency of nighttime operation are 
greatly improved.



2.4 The classification and quality inspection of agricultural products

A quality inspection of agricultural products helps to judge and determine the 

quality of the products and promote their commercialization [51]. With the 

development of computer vision technology, the automatic grading and quality 

inspection of agricultural products has been achieved, and computer vision systems 

have been widely used in different fields of the agricultural and food production 

market segments, avoiding the high cost and low efficiency of traditional operations 

[52]. At present, the technology is mainly applied for the evaluation and grading of 

vegetables and fruits to better improve the economic benefits of agricultural products 

[53].

The quality of agricultural products is one of the important factors affecting 

market prices and customer satisfaction [54]. In the past few decades, manual 

inspections have had many problems in maintaining consistency and ensuring a 

satisfactory detection efficiency. Computer vision provides a way to perform external 

quality checks and achieve high degrees of flexibility and repeatability at a relatively 

low cost and with high precision [55]. Researchers have conducted extensive research 

on the classification of fruits and vegetables based on computer vision. Carrot grading 

is a labor-intensive, time-consuming process; in order to improve the classification 

efficiency and achieve automatic detection, Deng et al. [56] developed an automatic 

carrot sorting system using computer vision technology. The experimental results 

showed that the detection accuracy, fiber root detection accuracy and crack detection 



accuracy were 95.5%, 98% and 88.3%, respectively. The proposed method and the 

constructed sorting system met the requirements of carrot quality detection and 

classification. The method can achieve satisfactory detection accuracy and high 

efficiency. However, the detection accuracy of the crack portion needs to be improved. 

Rouhallah Abedi Firouzjaei et al. [57] proposed a fast, nondestructive method to 

detect sweet lemon mechanical damage using image processing techniques and UV 

radiation for better classification. To this end, 135 sweet lemons were tested based on 

a completely random factor design. The accuracy of distinguishing between healthy 

and damaged sweet lemons was 100%. The quality detection and classification of 

sweet lemons achieved very high precision.

Potato is one of the world's major food crops. Kim et al. [58] proposed a 

nondestructive testing system based on computer vision technology to distinguish 

between the normal and black hearts of potatoes according to different transmittances. 

The results showed that the established nondestructive system combined with the 

processing method detect potato black hearts with high precision. The advantages of 

this detection technology are that it is non-destructive and can be used to achieve the 

accurate detection of potato black hearts. Tomato is one of the most popular and 

best-selling fruits in the world, and the quality of a tomato depends on its visual 

characteristics. Therefore, it is important to classify tomatoes according to certain 

quality levels. Mohammad Saber Iraji et al. [59] used a multi-input feature based on a 

tomato image dataset, neural network, regression and extreme learning machine 

(ELM) to build the multilayer system of the SUB Adaptive Neuro-Fuzzy Inference 



System (MLA-ANFIS) method. A deep sparse automatic encoder (DSSAE) method 

was proposed for the direct use of image data in tomato quality grading. The 

sensitivity of this method was 83.2%, with an accuracy of 95.5%. Therefore, this 

method can improve the inspection and quality treatment of tomatoes. The advantage 

of the DSSAE approach is that the system builds the relevant datasets that are used to 

classify the data directly from the tomatoes without the need to apply image 

processing techniques to extract features.

Recent studies have shown that spectroscopy is an effective nondestructive fruit 

quality testing technique. Tao Wang et al. [60] applied a spectroscopy technique to 

develop a low-cost, cloud-based portable near-infrared (NIR) system called 

“SeeFruits”, which was designed for fruit quality inspection. In the experiment, 240 

sweet cherries were selected as fruit samples to evaluate the performance of the 

'SeeFruits' system. The 'SeeFruits' system scored 0.89 in qualitative tasks and 0.83 in 

quantitative tasks. In general, even though it was ultra-portable, it achieved a 

satisfactory level of accuracy. The 'SeeFruits' system provides fast, flexible and 

friendly sweet cherry quality testing capability for nonprofessionals. However, there 

are still some gaps in the system, and further exploration and research are needed to 

expand the type and range of fruit detection and reduce the detection error. In order to 

check the internal mechanical damage in blueberries, Zhaodi Wang et al. [61] used 

hyperspectral transmittance data to detect damage using the residual network (ResNet) 

model, the improved ResNeXt model and two deep convolutional neural networks 

(CNNs). The experiments showed that the two deep learning models displayed better 



classification performance than traditional machine learning methods. For the ResNet 

and ResNeXt models, the classification of each test sample required only 5.2 

milliseconds and 6.5 milliseconds, respectively. The results of this study demonstrate 

the potential of the deep learning framework for analyzing fruit mechanical damage. 

The method innovatively combines a CNN structure with hyperspectral transmittance 

data and has strong development potential.

Computer vision is widely used in the quality inspection of agricultural products 

by analyzing the obtained optical image information and has the advantage of being 

nondestructive [14] while offering a simple operation that is of low cost and high 

precision [62]. At the same time, research shows that technologies such as deep 

learning and spectroscopy have become powerful tools and have great potential in 

analyzing fruit quality and sorting fruit types. The current technology still has a 

narrow application range and can only detect and classify relatively simple varieties. 

The detection accuracy needs to be improved, and other problems require solving. 

These issues also points the way for future development. In the future, relevant data 

sets will be established to expand the application range of the systems and enhance 

their versatility and portability.



Table 2-4 Summary of agricultural product quality testing

Author and 
year

Application goals 
and scenarios

Method adopted
Types of 
sensors

The results obtained Advantages and disadvantages

L. Deng, 2017 
[56]

Automatic carrot 
grading

An automatic carrot 
sorting system using 

machine vision 
technology

MV-VDM033SM/
SC

The detection accuracy of each 
part is 95.5%, 98% and 88.3% 

respectively.

The method has high precision and high 
efficiency. However, the detection 

accuracy of the crack portion has yet to 
be improved.

Firouzjaei et 
al., 2018 [57]

Rapid nondestructive 
testing of sweet 
lemon damage

A method for rapid 
detection using an image 
processing technology

Canon 
powershot-SX30 

IS

The method has an accuracy 
rate of 100% for damaged and 

undamaged fruits.

The quality detection and classification 
accuracy is high.

Kim et al., 
2016b [58]

Nondestructive 
testing of potatoes

Nondestructive testing 
system based on machine 

vision technology

Monochrome 
CCD camera

Achieved a higher accuracy. Nondestructive, high accuracy.

Iraji, 2018 [59]
Tomato inspection 

and quality 
processing

A deep stack sparse 
autoencoder (DSSAEs) 

method

A data set from a 
farm in Toskola

The sensitivity of the method is 
83.2% and the accuracy is 

95.5%.

The system can classify data directly 
from the dataset without image 

processing technology to extract 
features.

Wang et al., 
2018a [60]

Fruit quality testing
A portable near infrared 

(NIR) system called 
"SeeFruits"

ImSpectorV17E
C8484-05

The system has a score of 0.89 
in qualitative tasks and 0.83 in 

quantitative tasks.

The system is fast, flexible and friendly. 
However, the detection error still needs 

to be reduced.

Wang et al., 
2018b [61]

Detection of internal 
damage to 
blueberries

A method combining a 
CNN structure and 

hyperspectral 
transmittance data

Isuzu Optics 
Corp., Taiwan

The experiments show that the 
two deep learning models have 

better classification 
performance than the traditional 

methods.

The combination of a CNN structure and 
hyperspectral transmittance data has a 

very strong development potential.



2.5 Automated management of modern farms

After two and a half years of research, the Iron Ox company in the United States 

developed a complete cloud-based intelligent unmanned indoor hydroponic farm. The 

productivity of the farm is 30 times that of an ordinary outdoor farm. In 2018, the first 

crop of the farm was sold. With the further strengthening of technology, the 

“unmanned farm” has the advantages of precise operation and high efficiency, and it 

offers intelligent decision making, environmental protection and visual management 

in a simple and controllable operation [63]. The integration and implementation of 

automated crop production management, plant irrigation and yield assessment, and 

the application of computer vision technology are key [40]. The automated 

management of modern farms provides a wealth of knowledge and insights in terms 

of decision support and the practices of farmers [5]. This approach will save 

manpower and material costs; realize the simple, scientific and effective management 

of farms; and eliminate much of the hard work of farmers [64]. This section focuses 

on soil management, crop maturity testing and agricultural production estimates for 

unmanned farms.

Soil management [65] is a technology that maintains and enhances soil 

productivity through cultivation, fertilization, irrigation, etc. and has a notable impact 

on modern agricultural production. Bharath Sudarsan et al. [66] studied the 

cost-effective in situ design and development of new computer vision-based sensor 

system for estimating the soil texture and SOM. An image acquisition system was 

developed using a small, inexpensive handheld microscope. Images with variable 



texture and SOM were obtained in the laboratory and processed using a computer 

vision algorithm based on geospatial data analysis. The low cost and portability of the 

acquisition system and computer vision algorithms developed in this study 

demonstrate their suitability for laboratory and field conditions and show promise as a 

near-end soil sensor. However, the system requires further testing of robustness for 

soils with different humidity conditions. The use of low-cost cameras has expanded to 

all areas of technology, especially in agricultural applications. By obtaining useful 

information about the growth of horticultural crops through images, the soil water 

balance can be accurately estimated to achieve accurate irrigation planning [67]. J.M. 

González-Esquiva [68] proposed a novel computer vision system using a low-cost 

camera and a client-server architecture to provide users with valuable information 

about the irrigation management water balance. The proposed method achieved high 

precision in the estimation of PGC, with an average error of less than 5% and a 

processing time of less than 2 seconds per image in the server. The advantages of this 

approach are its scalability, integration and adaptability to different use cases.

Crop maturity estimates are still very challenging to obtain in unstructured 

environments such as farms [69]. New advances in computer vision offer 

opportunities for new applications in agriculture. Michael Halstead et al. [70] 

proposed a robot vision system that uses the Parallel-RFCNN structure to accurately 

estimate the maturity of sweet pepper (Capsicum annuum L.) crops. The model can 

accurately estimate the maturity, with an average accuracy of 82.1%. This tracking 

method is a visual-only solution, so it is cheap to implement because it only requires 



one camera. This method exhibits considerable ability under various conditions 

related to the image quality, variable illumination, presence of leaves and young fruit. 

WAN P et al. [71] proposed a method for detecting the maturity of fresh-market 

tomatoes by combining feature color values with back-propagation neural network 

(BPNN) classification techniques. The maturity detection device based on computer 

vision technology is specifically used to obtain tomato images in the laboratory. The 

tomato images are processed to obtain the color feature values. The maturity level of 

the sample is described based on the color feature value. Thereafter, the color feature 

value is imported as an input value into the BPNN to detect the maturity of the tomato 

sample. The results showed that the average accuracy of the tomato sample maturity 

was 99.31%, which was a very satisfactory result.

Crop yield estimation is an important task in the context of precision agriculture 

and an important factor in the planning of production processes. Production estimates 

play a decisive role in product marketing strategies and training practices and make it 

easier for farmers to plan and use resources in advance. Based on the known 

correlation between the number of visible fruits in a digital image and the total 

number of orange trees, Walter Maldonado Jr et al. [72] developed a green fruit 

feature extraction method to estimate the yield of citrus crops. This method combines 

the Laplace and Sobel color model transformation operators, threshold processing, 

histogram equalization, spatial filtering and Gaussian blur. The method has a false 

positive rate of 3% for images obtained under good conditions and takes 

approximately 8 minutes without any human interaction. Hyperspectral imaging (HSI) 



has been extensively studied and used in many food and agricultural applications 

because of its enormous potential and ability to characterize various target traits. Guti 

Rrez S et al. [73] made full use of hyperspectral technology and introduced a new 

method for estimating the mango yield using line scan hyperspectral images obtained 

from large orchard unmanned ground vehicles. The hyperspectral images were 

collected in commercial mango park blocks and preprocessed for illumination 

compensation. After tree delimitation and mango pixel recognition, an optimization 

process was performed to obtain the best fruit count model using the mango count 

obtained by manually counting the fruits on the tree. This model then used the most 

advanced RGB technique for the yield estimation. The model has been validated and 

tested on hundreds of trees and is comparable to the most advanced RGB technology.

Through the application of computer vision technology, the functions of soil 

management, maturity detection and yield estimation for farms have been realized. 

Moreover, the existing technology can be well applied to methods such as spectral 

analysis and deep learning. Most of these methods have the advantages of high 

precision, low cost, good portability, good integration and scalability and can provide 

reliable support for manager decision making. However, the existing technologies still 

have much room for improvement, such as improving robust performance, building 

related data sets, and expanding the scope of applications for smarter and more 

comprehensive management. In the future, the automated management of modern 

farms will be supported by digital agriculture. It is possible to move from 

cumbersome business processes to continuous automated processes [40]. Robots, 



small robots and drones that cooperate in the field for reconnaissance and harvesting, 

as well as the automated management of small and medium-sized multipurpose 

vehicles on the farm, will be the focus of future research [74]. Deep learning [75], as a 

modern image processing technology with great potential, will be very promising by 

extending its application to achieve farm management and large-scale ecosystem 

observation deployment to strengthen management and decision making [63].



Table 2-5 Summary of modern farm automation management

Author and year 
Application goals 

and scenarios
Method adopted Types of sensors The results obtained

Advantages and 
disadvantages

Sudarsan et al., 2016 
[66]

Estimation of soil 
texture and SOM

A new cost-effective in situ computer 
vision sensor system

AD 7013MT
This method shows low 

cost and portability.

It is low cost and portable. 
However, the robustness is 
further tested in different 

environments.

González-Esquiva et 
al., 2017 [68]

Management of 
irrigation water 

balance

A novel use of low-cost cameras and 
client-server architecture systems

A set low cost 
camera modules

High precision with an 
average error of less than 

5%

High precision, low time, 
integration and scalability

Michael Halstead 
2018 [70]

Accurately estimate 
the maturity of 
sweet pepper 

Efficient detection using the FRCNN 
framework

Cheap off-the-shelf 
cameras

The system can 
accurately estimate the 

number of sweet peppers 
that appear.

The cost is low and relatively 
stable.

Wan et al., 2018 
[71]

Detect tomato 
maturity

Technique combines characteristic 
color values with a back propagation 

neural network (BPNN).
SONY NEX5N

The average accuracy of 
the method for detecting 

tomato maturity is 
99.31%.

Excellent precision and high 
satisfaction

Maldonado and 
Barbosa, 2016 [72]

Estimation of citrus 
crop yield

A green fruit feature extraction 
method and a technique for 

estimating the citrus crop yield.
SONY DSC-W530

The false positive rate in 
the images obtained 

under good conditions is 
3%.

High efficiency and small 
error

Gutiérrez et al., 2019 
[73]

Estimation of 
mango crop yield

Line scan HIS technology.
Resonon Pika II 

Vis-NIR
Prosilica GT3300C

The yield can be 
estimated more 

accurately.

Compatible with the most 
advanced RGB technology.



2.6 Monitoring of farmland information with UAV

Real-time farmland information and an accurate understanding of that 

information play a basic role in precision agriculture [76]. Over recent years, UAV, as 

a rapidly advancing technology, has allowed the acquisition of agricultural 

information that has a high resolution, low cost, and fast solutions [77]. UAV 

platforms equipped with image sensors have provided detailed information on 

agricultural economics and crop conditions [78,79]. UAV remote sensing has 

contributed to an increase in agricultural production and a decrease in agricultural 

costs [80,81]. 

Rapid, accurate and economic estimation of agricultural biomass plays a 

prominent role in achieving accurate agricultural management. Traditional biomass 

acquisition methods mainly involve destructive sampling, which is time-wasting and 

challenging, problems that can be relatively easily mitigated by using UAV remote 

sensing, which, with the help of computer vision technology, can contribute to 

biomass estimation [82,83]. Guilherme Martineli Sanches et al. [84] evaluated and 

predicted the yield of sugarcane fields by UAV that obtained RGB images and 

contributed to evaluations that included the LAI (Leaf Area Index) and GRVI 

(Green-Red Vegetation Index), which were obtained by field sensors and UAV, 

respectively. Experiments have shown that estimates of the agricultural yield of 

sugarcane can be obtained by UAV. However, the use of such images to improve the 

yield model and extract plant height remains to be explored. Nondestructive digital 

modeling of forage biomass can prominently and effectively contribute to 



decision-making. Victor P. Rueda-Ayala et al. proposed the application of UAV 

technology and RGB-D reconstruction methods to monitor vegetation height and 

biomass, two approaches that are largely consistent. UAV systems are cheaper and 

simpler, covering a larger surface than RGB-D-based approaches [85]. Liang Han et 

al. conducted an in-depth study on the biomass estimation of maize, a very important 

crop [86], in which UAV remote sensing was used in combination with machine 

learning to provide spectral information to estimate the biomass of maize. 

Furthermore, they proposed an improved method for extracting plant height from 

UAV images and to indicate volume in experiments, which showed that the method 

can contribute to improvements in precision. Therefore, the combination of machine 

learning with UAV remote sensing serves as a promising alternative. In addition, 

Yaxiao Niu et al. obtained altitude directly from the UAV-RGB point cloud and 

estimated maize biomass. In short, the results show that this method is favorable for 

building a high-performance estimation model by machine learning [87]. 

Continuous crop monitoring plays a prominent role in precision agriculture 

[88,89]. Application of UAV can contribute to more sustainable agricultural 

automatic crop monitoring and provide a prominent support for agricultural 

decision-making [90,91]. In addition, the use of UAV is advantageous when 

constructing a scientific framework for agricultural resource management [77,92]. 

Thus, the next paragraph focuses on crop monitoring and irrigation management. 

To realize UAV-based chestnut tree automatic monitoring, Pedro Marques et al. 

proposed a canopy height model based on calculating the vegetation index (VI) that 



combined bands of visible light (RGB) and near-infrared (NIR) domains, which 

contributed to the rapid management and sustainable development of a chestnut 

plantation. Subsequently, UAV-based image processing was determined to be fast and 

stable [93]. Juan Enciso et al. studied the potential of UAV for use in measuring 

tomato height and canopy coverage, with the UAV measurements showing high 

consistency with manual measurements. However, some systematic errors can still be 

found, making intensive data and sample size collection in the future necessary to 

avoid systematic errors [94]. Carlos Henrique Wachholz de Souza et al. proposed an 

object-based UAV image analysis (OBIA) method that uses object analysis of UAV 

images to map sugarcane hoppers. The OBIA method showed a high degree of 

automation and adaptability, providing useful information for decision-making and 

agricultural monitoring [95]. Significant differences exist in the irrigation demand 

among different fields, making real-time irrigation management extremely important. 

Xiang Shi et al. developed a variable speed irrigation decision support system 

(VSI-DSS) based on UAV multispectral remote sensing. The system can process 

multispectral images acquired by UAV to obtain the vegetation index (VI) and then 

provide guidance for users. The results show that the method is reasonable and 

consistent with the expected results, but the reliability of the method needs to be 

improved [96]. In practical application, the integration of various technologies will 

contribute to a better application of the UAV platform. Luxon Nhamo et al. integrated 

UAV technology, auxiliary data, and knowledge-based rules into land cover 

classification processing. The accuracy of irrigated areas was improved from 71% to 



95% based on the application of UAV in postclassification correction. In short, 

research has demonstrated that UAV remote sensing plays a prominent role in 

irrigation area monitoring and water resource management decisions [97]. 

Currently, UAV platforms, because of the easy access to image data, are used in 

almost all agricultural applications [78,98]. UAVs are generally acknowledged to be 

advantageous when applied to crop monitoring, protection, management and other 

farm operations [80,99]. With the characteristics of flexibility, timeliness and stability, 

this approach makes assessment more scientific and promotes the planning as well as 

the management of agricultural resources [90,92]. Comprehensive analysis shows that 

UAV-based reference data acquisition approaches are alternatives to traditional 

methods. However, challenges remain in developing appropriate technologies and 

promoting the adoption of this technology by farmers [80], among which, problems 

such as limitation and accuracy are still worthy of deep discussion [91]. Therefore, 

UAV-based hyperspectral technology, combined with deep learning, machine 

learning and other technologies, will show more promising performance in the future 

[100].



Table 2-6 Summary of the monitoring of farmland information with UAV

Author and 
year 

Application goals 
and scenarios

Method adopted Types of sensors Results obtained Advantages and disadvantages

Guilherme 
Martineli 

Sanches et al., 
2018 [84]

Prediction of yield 
from sugarcane field

Evaluation indexes: LAI and 
GRVI

12.4 megapixel 1/2.3-inch 
CMOS RGB camera

Approximately 10 %
can be added to output by both 

indices.

How to improve the yield model to 
extract plant height remains to be 

explored.

Victor P. 
Rueda-Ayala 

2019 [85]

Study on plant height 
and biomass on 

grassland
Digital grassland model

UAV with geolocation and RGB 
cameras

UAV shows great consistency.
UAV systems are cheaper, more 

stable and easier to operate.

Liang Han et 
al., 2019 [86]

Investigation of 
maize biomass

A machine learning method 
for modeling aboveground 

corn biomass

An Octocopter DJI Spreading 
Wings S1000 UAV platform 
equipped with two cameras

The combination of machine learning 
with UAV is promising.

It works well with machine 
learning.

Yaxiao Niu et 
al., 2019 [87]

Estimation of corn 
biomass

A machine learning method
Quadrotor UAV-RGB remote 
sensing system DJI Phantom 4 

Pro
The effect is ideal.

It works well with machine 
learning.

Pedro 
Marques et 

al., 2019 [93]

Automatic 
monitoring of 
chestnut trees

A combined RGB and NIR 
model based on VI 

calculation.

senseFly eBee with RGB and 
CIR

It can manage chestnut plantations in 
a faster and more sustainable way.

Fast and stable



Juan Enciso et 
al., 2019 [94]

Growth monitoring of 
tomato

A measurement method 
based on UAV

DJI Phantom 4 Pro platform
No significant difference was 

observed between UAV and manual 
test results.

Some errors still need to be 
corrected.

Carlos 
Henrique 

Wachholz de 
Souza et al., 
2017 [95]

Monitoring sugarcane 
field

An object-based UAV image 
analysis (OBIA) method

eBee Ag with a Canon 
PowerShot S110 compact 

camera

OBIA exhibits a high degree of 
automation and adaptability.

It can contribute to decision-making 
and agricultural monitoring.

Xiang Shi et 
al., 2019 [96]

Making irrigation 
decisions

Decision support system for 
irrigation based on 
multispectral UAV 

spectrum.

UAV infrared multispectral 
platform

It shows strong rationality, consistent 
with expected results

Reliability needs to be further 
improved.

Luxon Nhamo 
et al., 2018 

[97]

Improving irrigation 
accuracy

A method to enhance the 
post-classification capability 

of UAV

Phantom 4 Pro drone with 
built-in camera

The accuracy of irrigation to the area 
increased from 71% to 95%.

It has certain feasibility and 
applicability.



3. The serious challenges faced by computer vision technology in the 

field of agricultural automation

3.1 The continuous expansion of application fields

With the rapid development of artificial intelligence, computer vision technology 

will be widely used in the field of agricultural automation. However, due to the 

complexity of agricultural production and the diversity of organisms, computer vision 

technology is currently used in the production management of individual crops for 

monitoring, plant protection and harvesting [40]. The technology still cannot 

overcome every obstacle in agricultural production, nor can it be popularized in all 

aspects of agricultural production. The application of computer vision technology in 

agriculture is still in the initial stages of development.

There is currently no large-scale public database [65,101] in the agricultural 

sector, and the existing research results often rely on data collected by the researchers 

themselves during the research and development process, which are not universal and 

comparable. Therefore, it is necessary to establish a complete agricultural database. 

To prevent and control crop pests and diseases, the existing computer vision 

techniques are limited to detecting a single species of pest. For the quality inspection 

of agricultural products, computer vision technology can only detect single varieties 

of agricultural products. For the automated management of unmanned farms, 

computer vision technology is still not applicable to all aspects of unmanned farm 



management, and there are many areas and functions that need to be explored. The 

large collections of data that are not shared are the key to the problem. In addition to 

the application areas and databases that need to be extended, researchers have found 

many problems, such as slow image information acquisition and slow response to 

different environmental systems.

3.2 The growth in the demand for professional talent

Due to the development of GPUs that have increased computing power in recent 

years, deep neural networks [63] have become a viable solution for image 

classification and are one of the most effective techniques for pattern recognition 

applications with a large number of images. Computer vision-based statistical 

machine learning algorithms will be widely used in agricultural applications [14], 

mainly using the high-density data parallel computing functionality highlighted in the 

GPUs. Emerging technologies and effective tools are inseparable from technology 

professionals and require professionals to continue to promote innovation and 

development.

Computer vision technology involves many disciplines, such as computer 

science, pattern recognition, artificial intelligence, and many others [14]. The existing 

technical achievements have problems such as low generality and a high demand for 

professional skills. If computer vision technology is widely used in the field of 

agricultural automation, there will be higher requirements for professionals and 

practitioners [102]. This advancement requires high-quality, all-round talent; the 



continuous development of new technologies; the exploration of new results; and the 

integration of results from various disciplines into complex agricultural production 

environments [103]. In addition, computer vision technology needs to overcome many 

of the difficulties and complementary gaps in the field of agricultural automation. 

Whether applied to scientific research in this field, education and training, or 

application promotion, this approach has a high demand for a number of skills.

3.3 Robust performance in a variety of complex situations

Agriculture is a comprehensive discipline full of diversity and uncertainty. 

Notably, the crop varieties and methods of agricultural production management are 

not only numerous but also very complicated. The same crops grow in different 

environments, and the end result is different. There are a variety of elements that are 

heterogeneous in production and harvesting. In such a complicated situation, 

computer vision technology, with strong comprehensiveness and high complexity, is 

applied to the field of modern agricultural informationization, and the robustness and 

performance have been rigorously tested.

In the application of computer vision technology, in terms of image acquisition, 

processing and classification, the individual characteristics of the problem must be 

considered to choose the appropriate algorithm [104]. There is no default workflow or 

common method for implementing computer vision technology. In these cases, the 

state of the target changes, the influence of the environment changes, etc., and all of 

these changes increase the number of factors that need to be analyzed in the image 



processing stage. At the same time, most of the existing technologies and methods are 

implemented in a laboratory environment or on an experimental platform [105]. When 

the experimental results are applied to an actual natural environment, the actual data 

and experimental data will be very different due to natural factors. The application of 

visual technology in the field of agricultural automation involves the integration of 

multiple disciplines, and the various irregularities will have a huge impact on practical 

applications. The real-time, accurate and robust performance of related technologies 

are challenging to ensure.

4. Analysis of application prospects for computer vision technology in 

agricultural automation

Agriculture is the foundation of modern human society [106] and plays a 

decisive role in human survival [107]. As an emerging technology, computer vision 

technology combined with artificial intelligence algorithm for a computer vision 

solution will become a necessary condition for improving agricultural efficiency and 

has broad prospects in future agricultural applications and research [3].

Computer vision technology will be better used in agriculture for automation and 

robotic farming [108]. Computer vision intelligence technology [109] is widely used 

in crop automation, growth monitoring, disease prevention, fruit harvesting and other 

aspects of agricultural automation production management. Future agricultural 

automation equipment will rely on large-scale agricultural datasets to maintain a 

mechanism coordinated by multiple participants [110] and a more innovative 



agricultural industrialization business model [111]. By using computer vision, 

expanding the use of GPUs [112] and applying advanced artificial intelligence 

technology to automate field tasks, the economic performance, general performance, 

coordination performance and robust performance of agricultural automation systems 

will be much improved.

In addition, computer vision technology will be more widely used to address 

current open agricultural issues, thereby ensuring agricultural production, quality and 

food security [113]. As a new technology in agricultural production management and 

a universal tool for providing reliable predictions of complex and uncertain 

phenomena, deep learning technology [114] will be better integrated with traditional 

imaging methods, hyperspectral imaging and other imaging modes to promote 

computer vision technology applications and developments. This approach will 

promote the development of agricultural automation equipment and systems in a more 

intelligent direction. In the future, the use of computer vision technology in the field 

of agricultural automation will play a role in improving agricultural productivity, 

quality and economic growth [52] and promote the development of agriculture 

towards improved the yield, efficiency, quality, ecology, safety and intelligence.

Conclusion

Overall, the application of computer vision technology in the field of agricultural 

automation is reviewed and analyzed in detail in this paper based on the summary of 

studies on it over the past three years. More specifically, the paper focuses on six 



areas, namely, crop growth monitoring, disease control, automatic harvesting, quality 

testing, automated management of modern farms and the monitoring of farmland 

information with UAV. We can conclude that the prior work contributes to the 

development of agricultural automation in the individual fields, with the advantages 

of low cost, high efficiency and high precision. In addition, based on the status quo, 

we analyzed the challenges that computer vision technology will face in future 

agricultural automation applications. First, as the technology continues to expand in 

the future, in order to achieve the versatility and coordination of technology, it is 

necessary to establish a large-scale dataset. At the same time, the technologies and 

challenges that need to be addressed in the future will continue to increase. Second, 

with the rapid development of agricultural automation, this field will involve the 

integration of more disciplines, and the requirements for professionals in terms of 

quality and quantity will continue to increase. Finally, due to the complex 

environmental background of agricultural production management, ensuring the 

accuracy and robustness of related technologies in various complex situations will 

also be challenging.

Based on the above analysis and discussion, we conclude that computer vision 

technology, as an emerging technology, will be better applied to agriculture. In the 

future, computer vision intelligence technology based on large-scale datasets will be 

widely used in every aspect of agricultural production management and will be more 

widely used to solve the current agricultural problems. Computer vision technology 

combined with artificial intelligence algorithms will improve the economic 



performance, general performance, coordination performance and robust performance 

of agricultural automation systems. Through the application of cutting-edge 

technologies such as deep learning technology and spectral analysis technology, 

agricultural automation equipment and systems will be developed in a more 

intelligent direction. In the future, with the application and development of computer 

vision technology, the efficiency and quality of agricultural production will be 

improved and will provide valuable suggestions and insights to farmers for decision 

support and actions [14,67], as well as aid the rapid and comprehensive development 

of agricultural automation.
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